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• Highlighting relevant features is an important step in understanding the decision-
making of typical black-box CNNs

• DeepLIFT determines the contributions of individual neurons, Integrated Gradients 
detects feature significance across the full range of input variables and Grad-CAM 
assigns class-specific activations to specific regions within images

• Integrated Gradients and DeepLIFT produce very similar results, but due to higher 
efficiency, DeepLIFT is usually preferable

• Grad-CAM generates a coarse localization map indicating important regions for a 
specific class decision

In contemporary machine learning, the proficiency exhibited by artificial neural 
networks is indisputable; however, their decision-making processes are often difficult 
to comprehend. This lack of transparency poses significant problems, particularly in 
critical domains such as healthcare and law enforcement, where comprehending AI-
driven decisions is of great importance to gain trust in the systems. This poster 
examines three popular backpropagation-based visualization methods for 
convolutional neural networks (CNNs): DeepLIFT, Integrated Gradients and Grad-

CAM. These methodologies try to indicate pixel or feature relevance by using 
gradients of the output passed backwards [1]. After a detailed analysis of these 
techniques, a comparison is made to show their individual limitations. This aims to 
assist the reader in selecting a suitable method for specific use cases.

DeepLIFT

Deep Learning Important FeaTures (DeepLIFT) [2] assigns pixel-wise attribution 
scores based on the difference from an input image 𝑥 to a reference image 𝑥′. The 
choice of reference should rely on domain-specific knowledge, aiming for a neutral 
prediction. Frequently, the black image or a blurred version of the input proves to be a 
suitable selection. 
The contribution scores 𝐶Δ𝑥𝑖Δ𝑡 of the difference-from-references of input neurons 𝑥𝑖 to 
the difference-from-reference of the target output 𝑡 satisfy the summation-to-delta 
property:

 ෍
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These contribution scores are averaged to obtain a multiplier that resembles a finite 
difference partial derivative:

𝑚Δ𝑥Δ𝑡 =
𝐶Δ𝑥Δ𝑡

Δ𝑥
The approach considers positive and negative contributions and can be calculated 
using one of the three proposed rules found in the DeepLIFT paper [2]:
• Linear rule: applicable to dense and convolutional layers without nonlinearities
• Rescale rule: applicable to single input nonlinear transformations, such as ReLU, 

sigmoid or tanh
• RevealCancel rule: alternative to the Rescale rule, serving as a fast approximation 

of Shapely values
The DeepLIFT paper proves the effectiveness of the chain rule for multipliers, enabling 
the computation of contribution scores for any neuron with respect to every target 
neuron within a single backward pass.

Integrated Gradients

Integrated Gradients [3], similar to DeepLIFT, assigns attribution scores to input 
features based on a neural network's predictions. It was designed using an axiomatic 
approach to fulfill two fundamental axioms for attribution methods:
• Sensitivity: if an input 𝑥 and a baseline 𝑥′, that differ in one feature, have different 

predictions, the attribution for this feature should not be zero
• Implementation Invariance: attribution consistency is maintained across functionally 

equivalent networks in which identical outputs result for each input configuration
The attribution score of feature 𝑥𝑖 for the network 𝑓 is computationally expressed as 
the integral of gradients of 𝑓 along the straight-line path from 𝑥 to 𝑥′:

IG𝑖 𝑥  ≝ 𝑥𝑖 − 𝑥𝑖
′ න
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𝜕𝑥𝑖

This formulation can be interpretated as the cumulative sensitivity of 𝑓 to changes in 
the 𝑖𝑡ℎ feature. The integral is approximated numerically using Riemann summation.

Grad-CAM 

Gradient-weighted Class Activation Mapping (Grad-CAM) [4] produces a coarse 
localization map, harnessing gradients of the network's output with respect to the 
feature maps, which are typically associated with the neurons in the last convolutional 
layer. This technique, an expansion of Class Activation Mapping (CAM), extends its 
applicability to a wide range of CNNs. The importance score for the 𝑚 × 𝑛 feature map 
𝐴𝑘 of a convolutional layer is calculated by averaging the gradient of the score 𝑦𝑐 for 
class 𝑐 with respect to 𝐴𝑘: 
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The resulting importance scores of every feature map are subsequently linearly 
combined and passed through a ReLU, as Grad-CAM only considers the positive 
influence of importance:

𝐿Grad−CAM
𝑐 = 𝑅𝑒𝐿𝑈 ෍

𝑘
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Finally, the activation maps are upsampled via bilinear interpolation to match the 
original input image resolution.

Mail: christian.ickler@uni-jena.de

Algorithm DeepLIFT Integrated Gradients Grad-CAM

Application Any artificial neural 
network

Any differentiable ML 
model

CNNs

Reference image 

required

Yes Yes No

Class-

discriminative

No No Yes

Axioms Sensitivity Sensitivity, 
implementation 
invariance

None

Operating area Global Global Local

Indicated 

attribution

Pixel-wise attributions; 
positive and negative 
attribution

Pixel-wise attributions; 
positive and negative 
attribution

Attribution of feature 
maps; only positive 
attribution

Integrated Gradients and DeepLIFT, as shown in Table 1, have similar characteristics 
and produce comparable results, especially when using the rescale rule for DeepLIFT. 
However, Integrated Gradients is less efficient, since it needs to calculate the 
network's gradient for each Riemann sum component. 
Grad-CAM avoids the need for a reference image and shows important feature maps 
instead of single pixels, which is often easier to interpret. In addition, Grad-CAM is 
class-discriminative, which allows visualization of only those features important to 
specific class decision (see Figure 1). Note that recently many extensions or 
combinations of the above methods have been developed, often yielding significant 
improvement.

Original image DeepLIFT (Rescale) Integrated Gradients

Original image Grad-CAM ‘Dog’

Figure 1: Feature importance detected by DeepLIFT, Integrated Gradients (top) and Grad-CAM 

(bottom) for state-of-the-art CNNs [4],[5].

Table 1: Comparison of the attribution methods DeepLIFT, Integrated Gradients and Grad-CAM.
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